
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
REFERENCE MANUAL

Product and documentation by Aparajita Fishman

Copyright © 2001-2016 All rights reserved



ObjectTools 5.0
2



ObjectTools 5.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TABLE OF CONTENTS

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

How Can Objects Help Me? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

How Do Objects Work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Registering ObjectTools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

System Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Resource Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

What’s New In Version 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

Working with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Creating and Destroying Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Memory Management with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Using Item Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Tag Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Item Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

The Character Item Type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Putting and Getting Values Generically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Embedded Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Accessing Embedded Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Using Arrays with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Accessing Array Elements within Object Items  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Other Array Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Error Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

The ObjectTools Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Changing the Log Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Command Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Documentation Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Creation and Destruction Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

OT New  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

OT Clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

OT ClearAll. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

OT Copy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Put Value Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

OT PutArray  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

OT PutArrayBLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

OT PutArrayBoolean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table of Contents 3



ObjectTools 5.0
OT PutArrayDate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

OT PutArrayLong  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

OT PutArrayPicture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

OT PutArrayPointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

OT PutArrayReal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

OT PutArrayString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

OT PutArrayText  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

OT PutArrayTime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

OT PutBLOB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

OT PutBoolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

OT PutDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

OT PutLong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

OT PutObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

OT PutPicture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

OT PutPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

OT PutReal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

OT PutRecord  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

OT PutString. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

OT PutText. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

OT PutTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

OT PutVariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Get Value Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

OT GetArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

OT GetArrayBLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

OT GetArrayBoolean  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

OT GetArrayDate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

OT GetArrayLong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

OT GetArrayPicture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

OT GetArrayPointer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

OT GetArrayReal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

OT GetArrayString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

OT GetArrayText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

OT GetArrayTime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

OT GetBLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

OT GetBoolean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

OT GetDate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

OT GetLong  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

OT GetNewBLOB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

OT GetObject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

OT GetPicture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

OT GetPointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

OT GetReal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

OT GetRecord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

OT GetRecordTable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 Table of Contents



ObjectTools 5.0
OT GetString  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

OT GetText  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

OT GetTime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

OT GetVariable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Array Utility Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

OT DeleteElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

OT FindInArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

OT InsertElement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

OT ResizeArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

OT SizeOfArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

OT SortArrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Object Info Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

OT IsObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

OT ItemCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

OT ObjectSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Item Info Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

OT GetAllNamedProperties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

OT GetAllProperties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

OT GetItemProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

OT GetNamedProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

OT IsEmbedded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

OT ItemExists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

OT ItemType  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Item Utility Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

OT CompareItems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

OT RenameItem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

OT CopyItem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

OT DeleteItem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Import/Export Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

OT BLOBToObject  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

OT ObjectToBLOB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

OT ObjectToNewBLOB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Object Utility Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

OT CompiledApplication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

OT GetHandleList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

OT GetOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

OT GetVersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

OT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

OT SetErrorHandler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

OT SetOptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table of Contents 5



ObjectTools 5.0
Index of Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6 Table of Contents



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 1

Introduction

ObjectTools is a 4th Dimension plug-in which provides a set of routines that allow you to 
create objects: a single entity in which you can store and retrieve any amount of data of 
differing types.

While similar to 4D BLOBs and other plug-ins, ObjectTools has several important 
advantages:

3 Objects store data as named items: Finally you are freed from the drudgery of using 
numeric offsets to store and retrieve data. With objects, you store and retrieve data as 
distinct items using a Unicode name.

3 Objects are random access: Whereas in practical terms BLOBs must be written and 
read in the same order, with objects you can store and retrieve data items in any order.

3 Objects are modifiable: You can replace, delete or copy an existing data item 
without recreating the entire object.

3 Objects can be stored in arrays: Because objects are represented by a Longint 
handle, you can create arrays of objects. This ability makes objects the perfect tool for 
interprocess messaging.

3 Objects can store and retrieve complete records with one call: This allows you to 
implement a kind of record-level undo.

3 Arrays within objects are directly accessible: Once stored in an object, you can get 
the size of an array and directly access any given element, allowing you to iterate over 
an array within an object.

3 Objects can be embedded in objects: You can store objects within objects and 
directly access embedded items, thus allowing you to easily model complex 
hierarchical data structures.

3 Objects reveal their structure: ObjectTools has a full suite of routines that let you 
know everything about the structure of an object. In fact, ObjectTools ships with a 
sophisticated visual object editor that uses these routines to create, examine and 
modify the contents of any object.

How Can Objects Help Me?
While the uses of objects are virtually limitless, there are several common problems 
which they solve.

3 They can be used to easily save and restore complex configuration data such as 
preferences.
Introduction 7



ObjectTools 5.0
3 They can drastically reduce the use of process and interprocess variables by allowing 
you to place related data in one object instead of numerous variables.

3 They can be used to save and restore entire records with one call.

3 They can be used to store hierarchically structured data.

3 They can facilitate an object-oriented style of programming.

How Do Objects Work?
In classical programming terms objects are implemented as an unordered dictionary.

A dictionary (also known as a map or an associative array) is a collection of key-value 
pairs, where the key uniquely identifies a value. In the case of objects, the key is the item 
reference, or tag. The value is whatever data was stored with the key.

Objects are unordered dictionaries, meaning that the internal order of the key-value 
pairs at any given time is indeterminate.

Registering ObjectTools
When you purchase ObjectTools you will receive a serial number. The serial number must 
be passed to the OT Register command in order to register your copy of the plugin. If OT 
Register is not called or is called with an incorrect serial number, ObjectTools will 
timeout after 15 minutes of use. Once ObjectTools has timed out, the next call to 
ObjectTools will cause an ObjectTools error to be generated, and subsequent calls will 
have no effect or return empty values if a values are expected.

System Requirements
ObjectTools 4 has the following minimum requirements:

3 4D v11.5+

3 Mac OS X 10.6.8 running on Intel, or Windows XP SP2+/2000/Vista/7

If ObjectTools is loaded on a version of 4D less than v11.5, it will become inactive.

Resource Files
Within the ObjectTools plugin bundle are resource files used by ObjectTools. These 
resource files are located in 
ObjectTools.bundle/Contents/icu.framework/Versions/A/Resources. The resource files 
are:

3 ObjectTools_56l.dat: Contains resources specific to ObjectTools.

3 icudt56l.dat: Contains resources used by ICU, a code library used by ObjectTools. This 
is a very large file because it contains Unicode and internationalization data for every 
country and language in the world.
8 Introduction



ObjectTools 5.0
The default location for these files is within the plugin bundle. They may also be placed 
in the <shared 4D folder>/com.aparajita/icu folder. The shared 4D folder is the parent of 
the folder which is returned by Get 4D folder(Licenses folder) within 4D. For the 
location of this folder, please refer to the 4D documentation for the Get 4D folder 
command.

If you decided to use the shared “icu” folder, both resource files must be placed there.

What’s New In Version 5
If you are upgrading from ObjectTools 2.5, the key difference is that this version runs as a 
native 4D v11+ plugin. This means you now have the following enhancements:

If you are upgrading from ObjectTools 4, you now have:

3 Full 64-bit support on OS X.

3 Support for 4D v15r2+.

3 More information in the error handler.

 
If you are upgrading from ObjectTools 3, you now have:

3 Full 64-bit support on Windows.

3 Support for Active4D v6’s ObjectTools interchange.

 
If you are upgrading from ObjectTools 2.x:

3 There is now full support for Unicode text throughout ObjectTools.

3 There is full support for the enhanced picture format used in 4D v11+.

3 Depending on your usage, ObjectTools 4 may run significantly faster in a Unicode 
mode database than version 2.5.
Introduction 9



ObjectTools 5.0
10 Introduction



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 2

Working with Objects

To effectively use ObjectTools objects, you need to learn a few simple concepts about 
their creation and destruction.

Creating and Destroying Objects
Like 4D hierarchical lists, objects are represented by a Longint known as the object 
handle, or simply handle. You create a new object with the OT New method, like this:

Once you have an object handle, you can then proceed to put values into and get values 
from the object, query the object for information about its structure, copy it to another 
object, and put it into a BLOB.

The data stored in an object takes up a certain amount of memory within your 
application. When you are completely finished with an object, it is critical that you 
release the object’s memory by calling OT Clear, like this:

Once you have cleared an object with OT Clear, you will no longer be able to use its 
handle.

Memory Management with Objects
The memory used by objects is global to the memory space of a single instance of 4D 
(Standalone, Client/Remote, or Server). This means that a single object may be shared 
between all 4D processes within a single instance of 4D, no matter in which 4D process it 
was created. On the other hand, a single object may not be shared between separate 
instances of 4D, either on the same machine or on different machines. This includes 
Client/Remote and Server.

If you lose track of an object handle without clearing the object — either by storing a 
handle in a local variable and leaving the method in which it was created, or by using a 
process variable and leaving the process in which it was created — the memory 
occupied by the object will remain and you will not be able to clear it. This is known as a 
leak, and it is a Bad Thing, especially if this process is repeated many times over.

C_LONGINT($object)
$object:=OT New

OT Clear($object:) `$object will be set to zero by OT Clear
Working with Objects 11



ObjectTools 5.0
To help you track down leaks, ObjectTools keeps track of all objects that have been 
created but not cleared. This list is available by calling OT GetHandleList. ObjectTools 
comes with a 4D method for creating a log file of all leaked objects, showing their 
complete contents. If you call the leak logger from the On Exit Database method, you can 
get a good idea of what objects were leaked and then remedy the situation.

During development, you may want to reset the database to an “original” state without 
closing and opening the database. ObjectTools provides a method called OT ClearAll 
which is provided for this purpose. OT ClearAll clears all objects that are still existing, no 
matter where or how they were created.

Using Item Tags
The key to storing values into and retrieving values from objects is to know how to use 
item references, or tags. Tags are the names you give to object items when you store (put) 
and retrieve (get) values from an object. For example, to put the Real value 27.13 into an 
object with the tag “my real”, you would use:

Assuming the object had just been created, this would create a new item in the object 
referenced by the handle $object. To retrieve the value stored with that tag, you would 
use:

To replace the existing value of "my real", you would simply call OT PutReal again, like so:

Tag Characteristics
Tags can be up to 2GB Unicode characters, and may consist of any valid Unicode 
characters except period (.), as that is used to indicate embedded objects. Capitalization 
is normally not significant; thus “My Real” and “my real” are considered the same tag by 
ObjectTools. Note that diacritical marks are always significant in tags.

If necessary, you can set an option to have case be significant when matching tag names.

Item Types
Like 4D variables, every item in an object has a distinct type which can be accessed. 
When an item is created by putting a value into an object, it is assigned the type that was 
specified by the OT Put<type> call. Except for character types and embedded objects, the 
type of an item is identical to the equivalent 4D type.

Note: You should not rely on OT ClearAll as a way of managing object memory.

OT PutReal ($object;"my real";27.13)

$real:=OT GetReal ($object;"my real")

OT PutReal ($object;"my real";827.1931)
12 Working with Objects



ObjectTools 5.0
ObjectTools defines several special item types for items that have no representation 
within 4D. Each of these types has a named constant defined which can be used to 
determine the item’s type.

Except for character types, you must get values from objects with the same type used to 
put the value. In other words, the <type> in OT Put<type> and OT Get<type> must match. 
Otherwise ObjectTools will generate an error and return a null value. For example:

The Character Item Type
Any characters put in an object, whether they start life as a String or as Text, have the item 
type OT Is Character.

Character items can be retrieved either as a String or as Text via OT GetString, OT GetText, 
or OT GetVariable. For example:

Constant Type Value

OT Is Character Characters 112

OT Character array Character array 113

OT Is Object Embedded ObjectTools object 114

OT Is Record Record data 115

C_LONGINT($object)
$object:=OT New
OT PutReal ($object;"my real";13.27)

C_LONGINT($bad)
$bad:=OT GetLong ($object;"my real") `This generates an error
C_REAL($real)
$real:=OT GetReal ($object;"my real") `This is okay

OT PutString ($object;"chars";"this was originally a string")

C_TEXT($text)
$text:=OT GetText ($object;"chars")

$text:="this was originally text"
OT PutText ($object;"chars";$text)

C_STRING(255;$str)
$str:=OT GetString ($object;"chars")
‘Of course in Unicode mode C_TEXT and C_STRING are the same
Working with Objects 13



ObjectTools 5.0
Likewise, any String or Text arrays put into an object are stored with an item type of OT 
Character array (113). Elements of this item type can then be retrieved either as a fixed 
width String or as Text via OT GetArrayString and OT GetArrayText.

Putting and Getting Values Generically
In some situations it is constrictive to have to know the type of an item in order to 
choose which OT Put or OT Get command to use. ObjectTools allows you to put and get 
values generically, without having to know their type, by using the OT PutVariable and 
OT GetVariable commands.

These commands take pointers to a variable, through which values are stored and 
retrieved from an object. Thus you can generically pass a pointer to these commands 
without having to know in advance the type of the variable they point to, as long as the 
variable and item type match according to the rules mentioned above.

Embedded Objects
ObjectTools allows you to embed objects within objects. This lets you create 
hierarchically structured representations of heterogeneous data. An object stored within 
another object has a distinct item type (not Is Longint) to identify it as such.

Note: When running in Unicode mode, all text put into or retrieved from an object is 
Unicode text.
14 Working with Objects



ObjectTools 5.0
Here’s what a complex object might look like. Indentation denotes embedded objects:

Here’s the code to create this object:

As you can see from the above example, ObjectTools automatically creates embedded 
objects as necessary if they appear in the tag and don’t yet in the object.

Accessing Embedded Objects
To access the "firstname" item in the "fields" Object, you would use:

This is what you would expect. But how would you access the "table" item in the 
embedded "dialog" object?

Embedded items are accessed using dot notation. Given an embedded object "foo", you 
access items within that object with the tag "foo.<item tag>".

So, for example, to access the "table" item inside the "dialog" object defined above, you 
would use:

Tag Type Contents

"fields" Object

    "firstname" Character "John"

    "lastname" Character "Doe"

"dialog" Object

    "table" Pointer ->[Contacts]

    "form" Character "Input"

    "left" Longint 200

    "top" Longint 200

    "width" Longint 350

    "height" Longint 300

    "title" Character "Contact Entry"

C_LONGINT($object;$fields;$dialog)
$object:=OT New

OT PutString ($object;"fields.firstname";"John")
OT PutString ($object;"fields.lastname";"Doe")

OT PutPointer ($object;"dialog.table";->[Forms])
OT PuString ($object;"dialog.form";"ContactInput")
OT PutLong ($object;"dialog.left";200)
`And so on

$firstName:= OT GetString ($object;"fields.firstname")
Working with Objects 15



ObjectTools 5.0
If objects are nested more than one level deep, you just continue adding dots. So to 
access an item called "bar" inside an embedded object called "foo" inside an embedded 
object called "foobar", you would use "foobar.foo.bar".

Using Arrays with Objects
Frequently you will want to store and retrieve entire arrays in objects. To do so there are a 
pair of calls you use, OT PutArray and OT GetArray.

Except for String and Text arrays, you must put and get arrays into the same type of array 
variable. For example:

String and Text arrays, however, may be mixed and matched. For example:

Accessing Array Elements within Object Items
If you need to get or set individual elements of an array within an object, you can do so 
by using the OT GetArray<type> or OT PutArray<type>method, where <type> represents 
the array’s type. For example, to get or set the seventh element of an array with the tag 
"strings", you would use:

C_POINTER($table)
OT GetPointer ($object;"dialog.table";$table)

C_LONGINT($object)
$object:=OT New
ARRAY LONGINT($longs;1)
$longs{1}:=27
ARRAY REAL($reals;0)

OT PutArray ($object;"array";$longs)
`This generates an error
OT GetArray ($object;"array";$reals) 
ARRAY LONGINT($longs;0)
OT GetArray ($object;"array";$longs) 
`$longs is restored to its previous state

ARRAY STRING(255;$str255s;1)
ARRAY TEXT($texts;1)

$str255s{1} := "this was originally a string"
$texts{1} := "this was originally text"

OT PutArray ($object;"char array";$texts)
OT GetArray ($object;"char array";$str255s)
`$str255s{1} contains "this was originally text"

C_STRING(255;$str255)
$str255:=OT GetArrayString ($object;"char array";1)
`$str255 contains "this was originally text"
16 Working with Objects



ObjectTools 5.0
In conjunction with the OT SizeOfArray method, this allows you to iterate over and 
retrieve the contents of an array within an object.

Other Array Utilities
ObjectTools also contains a full suite of commands for inserting and deleting array 
elements, as well as searching and sorting. This allows you to operate on arrays 
completely within an object without having to copy it out of the object, modify it, and 
then copy it back into the object.

Error Handling
It is virtually impossible to corrupt an object with any ObjectTools methods. ObjectTools 
uses extensive error checking to ensure that all object handles and item references are 
valid, and stops before any damage can be done.

When an error does occur, such as passing a bad object handle or item reference, 
ObjectTools generates an error, sets the OK variable to zero, and returns a null value. For 
more on ObjectTools error handling, see the documentation for OT SetErrorHandler.

The ObjectTools Log
ObjectTools 4 logs its internal operations to help you debug problems that are difficult to 
trace otherwise.

Logs are kept in <database structure directory>/Logs/ObjectTools, where the “Logs” 
directory is what would be returned by Get 4D folder(Logs Folder). Log files are rotated 
automatically when they reach 1MB in size. A total of seven log files are kept, with 
ObjectTools.0.log being the current log file, ObjectTools.1.log being the previous log file, 
and so on up to ObjectTools.6.log.

ObjectTools logs the following types of information in the log file:

3 Information about the host environment

3 Internal and runtime errors

Each log entry occupies one logical line and looks something like this:

Log entries contain the date and time of the entry, followed by “ObjectTools:”, followed 
by the entry type, followed by the message.

The log entry types are:

3 info: General information about ObjectTools operations or environment

$str:=OT GetArrayString ($object;"strings";7)
OT SetArrayString ($object;"strings";7;"This is a test")

Nov 20 17:08:34 ObjectTools: [notice] env: ObjectTools 4.0 
[Macintosh/Intel, release]
Working with Objects 17



ObjectTools 5.0
3 notice: “Official” announcements

3 warn: Conditions that may cause problems or errors and should be looked into

3 error: Internal or runtime errors that should be attended to

3 debug: Detailed information about ObjectTool’s internal operations

Changing the Log Level
If the normal logging does not provide enough information to debug a problem, or if 
you would like to disable logging altogether, you can change the log level.

To change the log level, follow these steps:

1 In a text editor, create a new plain text document.

2 In the document, enter the text “debug” or “off”.

3 Save the document as “log_level” in the ObjectTools log directory.

4 Restart 4D.

If ObjectTools finds “log_level” (or for backward compatibility, “log_debug_level”) in the 
log directory and it contains “debug” or “off”, the log level is set accordingly.

3 When the log level is “debug”, you will see many log extra entries of type “debug”. This 
level gives you detailed information about the inner workings of ObjectTools.

3 When the log level is “off”, logging is completely turned off.

The default log level can be restored either my moving, renaming or deleting the 
“log_level” file or by deleting the text within the file, then restarting 4D.
18 Working with Objects



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 3

Command Reference

ObjectTools is comprised of a suite of plug-in routines and 4th DIMENSION methods, 
designed to extend the existing 4th DIMENSION Command Set, providing a variety of 
routines.

3 Creation/Destruction: Used to create and destroy (delete) objects.

3 Putting Values: Provide information for storing data in an object or sub-object(s).

3 Getting Values: Provide information for retrieving data previously stored in an object 
or sub-object(s).

3 Array Utilities: Utilities for manipulating arrays.

3 Object Info: Obtain various state information about an object.

3 Item Info: Obtain various state information about an object item.

3 Item Utilities: Utility routines that operate on individual items.

3 Import/Export: Routines for moving objects into and out of BLOBs.

3 Object Utilities: Miscellaneous utility routines that operate on objects.

Documentation Conventions
In general, the conventions used for documenting plugin calls within this manual are the 
same as those within 4D’s documentation. In addition, this manual uses a prefix for 
parameter names to indicate what happens to their data.

Prefix Example Meaning

in inTitle The parameter’s data is read and left intact

out outTitle The parameter’s data on entry to the call is ignored and is 
set by the call, replacing any previous data contained by 
the parameter

io ioTitle The parameter’s data is read by the call and then either 
replaced or augmented
Command Reference 19



ObjectTools 5.0
Creation and Destruction Routines

The following routines can be used to create and destroy ObjectTools objects. You must 
successfully create a valid object before using any other ObjectTools routine.
20 Command Reference



ObjectTools 5.0
Discussion
Creates a new, empty object and returns it. The new object is added to internal list of 
objects. When you are finished with the object, call OT Clear to release the memory used 
by the object.

Warning: Never attempt to pass any value to an ObjectTools routine other than that 
returned by OT New.

See Also
OT IsObject, OT Clear

OT New version 1

OT New Longint

Parameter Type Description
Function result Longint  A handle to a new, empty object
Command Reference 21



ObjectTools 5.0
Discussion
When you are finished with an object, you should always call OT Clear to release the 
memory occupied by the object. If you create an object and then lose track of its handle, 
you will no longer be able to release its memory. This is known as a leak, and it is 
considered a Bad Thing.

ObjectTools maintains an internal list of all objects that have been created but not 
cleared. When an object is disposed of with OT Clear, it is removed from the list. The 
current list of created objects is available with the OT GetHandleList method.

You can actually release the memory used by leaked objects with OT GetHandleList or 
OT ClearAll. However, using these as a means of object memory management is not 
recommended.

It you pass a variable directly to OT Clear (as opposed to an extremely lucky guess at a 
number constant), the variable will be set to zero.

Examples
The sample code is below demonstrates creating two temporary objects to pass to a 
method. The first one will leak, while the second one is properly disposed with OT Clear.

See Also
OT New, OT ClearAll

OT Clear version 1

OT Clear(ioObject)

Parameter Type Description
ioObject Longint  A handle to an object

Note: It is legal to pass a null handle (0) to OT Clear.

C_LONGINT($leak;$notLeak)
$leak:=OT New
OT PutString ($leak;"name";[Contacts]Name)
$notLeak:=OT New
OT PutString ($notLeak;"address";[Contacts]Address)
MyMethod($leak;$notLeak)
OT Clear ($notLeak)   `The memory is released

`If we leave this method at this point, we will not be able to 
`recover the value of $leak, so its memory will leak.
22 Command Reference



ObjectTools 5.0
Discussion
This method disposes of all objects that have been created but not cleared via OT Clear. It 
is provided as a "fail-safe" way of cleaning up the memory used by objects, but this 
method should not be relied upon as a means of managing object memory usage.

The primary use for OT ClearAll is during development, when you frequently have to stop 
program execution. As a result it is quite possible that you may create a new object with 
OT New but never reach the code that calls OT Clear. In such cases you can execute a 
method that calls OT ClearAll to clear all of the existing objects. This way you can start 
over again without leaking memory and without having to close and open the database.

See Also
OT Clear, OT New, OT GetHandleList

OT ClearAll version 1

OT ClearAll
Command Reference 23



ObjectTools 5.0
Discussion
OT Copy makes a complete copy of object and returns the copy. The copy is added to the 
ObjectTools handle list, and must be cleared with OT IsObject when it is no longer 
needed.

If memory cannot be allocated for the copy, an error is generated and OK is set to zero.

See Also
OT Clear, OT ClearAll

OT Copy version 1

OT Copy(inObject)  Longint

Parameter Type Description
inObject Longint  A handle to an object
Function result Longint  A handle to a new object
24 Command Reference



ObjectTools 5.0
Put Value Routines

The following routines are used to store data in any ObjectTools object. After you have 
successfully created an object (see “Creation and Destruction Routines”), you can begin 
storing data into the object.
Command Reference 25



ObjectTools 5.0
Discussion
OT PutArray puts inArray into inObject. The element count and current element are stored 
with the array elements and are restored by OT GetArray. You may not store two-
dimensional arrays in objects.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has a compatible type (see below), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

Array Type Compatibility
Except for String and Text arrays, you must put and get arrays into the same type of array 
variable. String and Text arrays, however, may be mixed and matched, because 
ObjectTools stores both types of array with an item type of OT Character array (113).

See Also
OT GetArray

OT PutArray version 1

OT PutArray(inObject; inTag; inArray)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inArray Array  One-dimensional array to store
26 Command Reference



ObjectTools 5.0
Discussion
OT PutArrayBLOB sets an element of an array in inObject.

If the object is not a valid object handle, if no item in the object has the given tag, or if 
the 4D version is not v14 or later, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Blob array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayBLOB

OT PutArrayBLOB v4.1r1

OT PutArrayBLOB(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue BLOB  Value to set
Command Reference 27



ObjectTools 5.0
Discussion
OT PutArrayBoolean sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Boolean array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set 
(0=false, 1=true).

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayBoolean

OT PutArrayBoolean version 2

OT PutArrayBoolean(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Number  1=true, 0=false
28 Command Reference



ObjectTools 5.0
Discussion
OT PutArrayDate sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Date array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayDate

OT PutArrayDate version 2

OT PutArrayDate(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Date  Value to set
Command Reference 29



ObjectTools 5.0
Discussion
OT PutArrayLong sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Longint array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayLong

OT PutArrayLong version 2

OT PutArrayLong(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Number  Value to set
30 Command Reference



ObjectTools 5.0
Discussion
OT PutArrayPicture sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Picture array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayPicture

OT PutArrayPicture version 2

OT PutArrayPicture(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Picture  Value to set
Command Reference 31



ObjectTools 5.0
Discussion
OT PutArrayPointer sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Pointer array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

Warning: Under no circumstances should you attempt to store a pointer to a local or 
process variable in a compiled database and then try to retrieve that pointer in 
another process.

See Also
OT GetArrayPointer

OT PutArrayPointer version 2

OT PutArrayPointer(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Pointer  Value to set
32 Command Reference



ObjectTools 5.0
Discussion
OT PutArrayReal sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type Real array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayReal

OT PutArrayReal version 2

OT PutArrayReal(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Number  Value to set
Command Reference 33



ObjectTools 5.0
Discussion
OT PutArrayString sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Character array, and inIndex is in 
the range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayString

OT PutArrayString version 2

OT PutArrayString(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue String  Value to set
34 Command Reference



ObjectTools 5.0
Discussion
OT PutArrayText sets an element of an array in inObject.

If the object is not a valid object handle or if no item in the object has the given tag, an 
error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Character array, and inIndex is in 
the range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayText

OT PutArrayText version 2

OT PutArrayText(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Text  Value to set
Command Reference 35



ObjectTools 5.0
Discussion
OT PutArrayTime sets an element of an array in inObject.

If the object is not a valid object handle, if no item in the object has the given tag, or if 
the 4D version is not v14 or later, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Time array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is set to 
inValue.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated and OK is set to zero.

See Also
OT GetArrayTime

OT PutArrayTime v4.1r1

OT PutArrayTime(inObject; inTag; inIndex; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inIndex Number  Index of array element to set
inValue Time  Value to set
36 Command Reference



ObjectTools 5.0
Discussion
OT PutBLOB puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is BLOB, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetBLOB

OT PutBLOB version 1

OT PutBLOB(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue BLOB  4D BLOB to store
Command Reference 37



ObjectTools 5.0
Discussion
OT PutBoolean puts inValue into inObject. The value zero is considered False, any non-
zero value is considered True.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Boolean, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetBoolean

OT PutBoolean version 2.5r3

OT PutBoolean(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Longint  Boolean value to store
38 Command Reference



ObjectTools 5.0
Discussion
OT PutDate puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Date, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetDate

OT PutDate version 1

OT PutDate(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Date  4D date to store
Command Reference 39



ObjectTools 5.0
Discussion
OT PutLong puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Longint, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetLong

OT PutLong version 1

OT PutLong(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Longint  Long to store
40 Command Reference



ObjectTools 5.0
Discussion
OT PutObject puts inObject into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type OT Is Object (114), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

The handle which is created by OT New and passed to OT PutObject is forever lost and 
is an instant leak.

See Also
OT GetObject

OT PutObject version 1

OT PutObject(inObject; inTag; inObject)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inObject Longint  Handle of object to store

Note: An object put into another object still remains in memory. It is still your 
responsibility to clear it when you no longer need it by calling OT Clear. Do not do the 
following: 

OT PutObject ($object;"bad thing!";OT New)
Command Reference 41



ObjectTools 5.0
Discussion
OT PutPicture puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Picture, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetPicture

OT PutPicture version 1

OT PutPicture(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Picture  Picture to store
42 Command Reference



ObjectTools 5.0
Discussion
OT PutPointer puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Pointer, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

Warning: Under no circumstances should you attempt to store a pointer to a local or 
process variable in a compiled database and then try to retrieve that pointer in 
another process.

See Also
OT GetPointer

OT PutPointer version 1

OT PutPointer(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Pointer  Pointer to store
Command Reference 43



ObjectTools 5.0
Discussion
OT PutReal puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Real, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetReal

OT PutReal version 1

OT PutReal(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Real  Number to store
44 Command Reference



ObjectTools 5.0
Discussion
OT PutRecord puts the current record into object in a packed format. The contents of the 
item can only be retrieved with OT GetRecord.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type OT Is Record (115), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero.

If table is not a valid table or field pointer, or if there is no current record for the given 
table, an error is generated and OK is set to zero if the OT VariantItems option is not set, 
otherwise the existing item is deleted and a new item is created.

Warning: Once a record is stored with OT PutRecord, it must be retrieved into the 
same table. Otherwise the results are undefined (and potentially disastrous).

See Also
OT GetRecord, OT GetRecordTable

OT PutRecord version 1.5

OT PutRecord(inObject; inTag; inTable)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inTable Table/Field pointer  Table whose record you want to store
Command Reference 45



ObjectTools 5.0
Discussion
OT PutString puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type OT Is Character (112), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving strings.

See Also
OT PutText, OT GetString, OT GetText

OT PutString version 1

OT PutString(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue String  String to store
46 Command Reference



ObjectTools 5.0
Discussion
OT PutText puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type OT Is Character (112), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving strings.

See Also
OT PutString, OT GetText, OT GetString

OT PutText version 1

OT PutText(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Text  Text to store
Command Reference 47



ObjectTools 5.0
Discussion
OT PutTime puts inValue into inObject.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Is Time, its value is replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetLong

OT PutTime v4.1r1

OT PutTime(inObject; inTag; inValue)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inValue Time  Time to store
48 Command Reference



ObjectTools 5.0
Discussion
OT PutVariable puts the contents of the variable pointed to by inVarPointer into inObject. 
Every 4D variable type but 2D arrays can be stored with this command, including 
Boolean variables and arrays. Once stored, the data can either be retrieved with 
OT GetVariable or with the OT Get<type> command appropriate to the variable’s type.

If inObject is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, a new item is created.

If an item with the given tag exists and has the type Type(variablePointer->), its value is 
replaced.

If an item with the given tag exists and has any other type, an error is generated and OK 
is set to zero if the OT VariantItems option is not set, otherwise the existing item is 
deleted and a new item is created.

See Also
OT GetVariable

OT PutVariable version 1.5

OT PutVariable(inObject; inTag; inVarPointer)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
inVarPointer Variable pointer  Pointer to variable which contains 

value to store
Command Reference 49



ObjectTools 5.0
Get Value Routines

The following routines provide the ability to get the value of any object item. After you 
have successfully put data into an object item, you can begin retrieving data from the 
object.
50 Command Reference



ObjectTools 5.0
Discussion
OT GetArray gets an array value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and 
outArray is cleared.

If no item in the object has the given tag, outArray is cleared. If the FailOnNoItem option 
is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has a compatible type, the array’s contents are 
replaced.

If an item with the given tag exists and has any other type, an error is generated, OK is set 
to zero, and array is cleared.

Array Type Compatibility
Except for String and Text arrays, you must put and get arrays into the same type of array 
variable. String and Text arrays, however, may be mixed and matched, because 
ObjectTools stores both types of array with an item type of OT Character array (113).

See Also
OT PutArray

OT GetArray version 1

OT GetArray(inObject; inTag; outArray)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to set
outArray Array  Array to receive the item’s contents

Note: If you retrieve into a fixed width string array and your database is running in 
compatibility mode, the elements will be truncated to the width of the array.
Command Reference 51



ObjectTools 5.0
Discussion
OT GetArrayBLOB gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle or if the 4D version is not v14 or later, an error is 
generated, OK is set to zero, and and empty BLOB is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Blob array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and an empty BLOB is returned.

See Also
OT PutArray, OT PutArrayBLOB

OT GetArrayBLOB v4.1r1

OT GetArrayBLOB(inObject; inTag; inIndex)  BLOB

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result BLOB  The array element’s contents
52 Command Reference



ObjectTools 5.0
Discussion
OT GetArrayBoolean gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Boolean array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned 
as a number (0=false, 1=true).

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and zero is returned.

See Also
OT PutArrayBoolean

OT GetArrayBoolean version 1

OT GetArrayBoolean(inObject; inTag; inIndex)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Number  The array element’s contents
Command Reference 53



ObjectTools 5.0
Discussion
OT GetArrayDate gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and a null 
date (!00/00/00!) is returned.

If no item in the object has the given tag, a null date is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Date array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and a null date is returned.

See Also
OT PutArray, OT GetDate

OT GetArrayDate version 1

OT GetArrayDate(inObject; inTag; inIndex)  Date

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Date  The array element’s contents
54 Command Reference



ObjectTools 5.0
Discussion
OT GetArrayLong gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Longint array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and zero is returned.

See Also
OT PutArray, OT GetLong

OT GetArrayLong version 1

OT GetArrayLong(inObject; inTag; inIndex) Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Number  The array element’s contents
Command Reference 55



ObjectTools 5.0
Discussion
OT GetArrayPicture gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty picture is returned.

If no item in the object has the given tag, an empty picture is returned. If the 
FailOnNoItem option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Picture array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and an empty picture is returned.

See Also
OT PutArray, OT GetPicture

OT GetArrayPicture version 1

OT GetArrayPicture(inObject; inTag; inIndex)  Picture

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Picture  The array element’s contents
56 Command Reference



ObjectTools 5.0
Discussion
OT GetArrayPointer gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and a nil 
pointer is returned.

If no item in the object has the given tag, a nil pointer is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Pointer array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and a nil pointer is returned.

Warning: Under no circumstances should you attempt to store a pointer to a local or 
process variable in a compiled database and then try to retrieve that pointer in 
another process.

See Also
OT PutArray, OT GetPointer

OT GetArrayPointer version 1

OT GetArrayPointer(inObject; inTag; inIndex; outPointer)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
outPointer Pointer  Receives the array element’s contents
Command Reference 57



ObjectTools 5.0
Discussion
OT GetArrayReal gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Real array, and inIndex is in the range 
(0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and zero is returned.

See Also
OT PutArray, OT GetReal

OT GetArrayReal version 1

OT GetArrayReal(inObject; inTag; inIndex) Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Number  The array element’s contents
58 Command Reference



ObjectTools 5.0
Discussion
OT GetArrayString gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty string is returned.

If no item in the object has the given tag, an empty string is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Character array, and inIndex is in 
the range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is 
returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and an empty string is returned.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving strings.

See Also
OT PutArray, OT GetArrayText

OT GetArrayString version 1

OT GetArrayString(inObject; inTag; inIndex)  String

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result String  The array element’s contents

Note: If your database is running in compatibility mode and the result of this 
method is assigned to a fixed width string variable, the item’s contents will be 
truncated to the width of the variable. To retrieve more than 255 characters from a 
character array, use OT GetArrayText and assign to a text variable or field.
Command Reference 59



ObjectTools 5.0
Discussion
OT GetArrayText gets a value in inObject from the array item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty string is returned.

If no item in the object has the given tag, an empty string is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Character array, and inIndex is in 
the range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is 
returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and an empty string is returned.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving text.

See Also
OT PutArray, OT GetArrayString

OT GetArrayText version 1

OT GetArrayText(inObject; inTag; inIndex)  Text

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Text  The array element’s contents

Note: If your database is running in compatibility mode and the result of this 
method is assigned to a fixed width string variable, the item’s contents will be 
truncated to the width of the variable. To retrieve more than 255 characters from a 
character array, assign the result to a text variable or field.
60 Command Reference



ObjectTools 5.0
Discussion
OT GetArrayTime gets a value in inObject from the array item referenced by inTag.

the object is not a valid object handle or if the 4D version is not v14 or later, an error is 
generated, OK is set to zero, and the time ?00:00:00? is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Time array, and inIndex is in the 
range (0..OT SizeOfArray(inObject; inTag)), the value of the requested element is returned.

If an item with the given tag exists and has any other type, or if the index is out of range, 
an error is generated, OK is set to zero, and the time ?00:00:00? is returned.

See Also
OT PutArray, OT PutArrayTime

OT GetArrayTime v4.1r1

OT GetArrayTime(inObject; inTag; inIndex) Time

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
inIndex Number  Index of array element to retrieve
Function result Time  The array element’s contents
Command Reference 61



ObjectTools 5.0
Discussion
OT GetBLOB gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty BLOB is returned.

If no item in the object has the given tag, an empty BLOB is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is BLOB, outBLOB’s contents are 
replaced.

If an item with the given tag exists and has any other type, OK is set to zero, and an 
empty BLOB is returned.

Warning: Do not attempt to pass a BLOB field or a dereferenced pointer to a BLOB 
field in the blob paremeter, as this will result in a crash. If you want to retrieve a BLOB 
item into a field, either use an intermediate local variable or assign the result of 
OT GetNewBLOB to the field. The same applies to passing a dereferenced pointer to a 
BLOB variable.

This command is being kept for backward compatibility. Because of the problems 
related to this command, it is recommended that you use OT GetNewBLOB instead, as 
this command may be removed in future versions.

See Also
OT PutBLOB, OT GetNewBLOB

OT GetBLOB version 1

OT GetBLOB(inObject; inTag; outBLOB)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
outBLOB BLOB  The retrieved item
62 Command Reference



ObjectTools 5.0
Discussion
OT GetBoolean gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Boolean, the value of the 
requested item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and zero is 
returned.

See Also
OT PutBoolean, OT GetArrayBoolean

OT GetBoolean version 2.5r3

OT GetBoolean(inObject; inTag)  Longint

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Longint  The retrieved item
Command Reference 63



ObjectTools 5.0
Discussion
OT GetDate gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and a null 
date (!00/00/00!) is returned.

If no item in the object has the given tag, a null date is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Date, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and a null 
date is returned.

See Also
OT PutDate, OT GetArrayDate

OT GetDate version 1

OT GetDate(inObject; inTag)  Date

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Date  The retrieved item
64 Command Reference



ObjectTools 5.0
Discussion
OT GetLong gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Longint, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and zero is 
returned.

See Also
OT PutLong, OT GetArrayLong

OT GetLong version 1

OT GetLong(inObject; inTag)  Longint

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Longint  The retrieved item
Command Reference 65



ObjectTools 5.0
Discussion
OT GetNewBLOB gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty BLOB is returned.

If no item in the object has the given tag, an empty BLOB is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is BLOB, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and an 
empty BLOB is returned.

Warning: Because of the problems related to the OT GetBLOB command, it is 
recommended that you use this command instead.

See Also
OT PutBLOB, OT GetBLOB

OT GetNewBLOB version 1.5

OT GetNewBLOB(inObject; inTag)  BLOB

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result BLOB  The retrieved item
66 Command Reference



ObjectTools 5.0
Discussion
OT GetObject gets an object value in object from the item referenced by inTag. If this 
routine successfully returns a new object, the new object handle is added to the 
ObjectTools handle list.

If the object is not a valid object handle, an error is generated, OK is set to zero, and a null 
object handle (0) is returned.

If no item in the object has the given tag, a null object handle is returned.

If an item with the given tag exists and has the type OT Is Object (114), its contents are 
returned as a new object.

If an item with the given tag exists and has any other type, an error is generated, OK is set 
to zero, and a null object handle is returned.

Warning: This method creates and returns a new object in memory. You are 
responsible for clearing it when you no longer need it by calling OT IsObject.

See Also
OT PutObject, OT IsObject

OT GetObject version 1

OT GetObject(inObject; inTag)  Longint

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Longint  A handle to a new object
Command Reference 67



ObjectTools 5.0
Discussion
OT GetPicture gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty picture is returned.

If no item in the object has the given tag, an empty picture is returned. If the 
FailOnNoItem option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Picture, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and an 
empty picture is returned.

See Also
OT PutPicture, OT GetArrayPicture

OT GetPicture version 1

OT GetPicture(inObject; inTag)  Picture

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Picture  The retrieved item
68 Command Reference



ObjectTools 5.0
Discussion
OT GetPointer gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and a nil 
pointer is returned.

If no item in the object has the given tag, a nil pointer is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Pointer, the value of the requested 
element is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and a nil 
pointer is returned.

Warning: Under no circumstances should you attempt to store a pointer to a local or 
process variable in a compiled database and then try to retrieve that pointer in 
another process.

See Also
OT PutPointer, OT GetArrayPointer

OT GetPointer version 1

OT GetPointer(inObject; inTag; outPointer)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
outPointer Pointer  The retrieved item
Command Reference 69



ObjectTools 5.0
Discussion
OT GetReal gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and zero 
is returned.

If no item in the object has the given tag, zero is returned. If the FailOnNoItem option is 
set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Real, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and zero is 
returned.

See Also
OT PutReal, OT GetArrayReal

OT GetReal version 1

OT GetReal(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Number  The retrieved item
70 Command Reference



ObjectTools 5.0
Discussion
OT GetRecord sets the current record of a table from the packed record data in the item 
referenced by inTag. The contents of the item must have been set with OT PutRecord. The 
table used to store the packed record is the table which will have its current record set.

If object is not a valid object handle, an error is generated and OK is set to zero.

If no item in object has the given tag, nothing happens.

If an item with the given tag exists and has the type OT Is Record, the current record of the 
item’s original table is set.

If there is no current record for the item’s table or the current record is locked, an error is 
generated and OK is set to zero.

Warning: Once a record is stored with OT PutRecord, it must be retrieved into the 
same table. Otherwise the results are undefined (and potentially disastrous). You can 
use the OT GetRecordTable command to find the source table for a stored record.

See Also
OT PutRecord, OT GetRecordTable

OT GetRecord version 1.5

OT GetRecord(inObject; inTag)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Command Reference 71



ObjectTools 5.0
Discussion
OT GetRecordTable retrieves the table number from the packed record data in the item 
referenced by tag. The contents of the item must have been set with OT PutRecord. The 
table used to store the packed record is the table whose number will be returned.

If the object is not a valid object handle, or no item in object has the given tag, zero is 
returned, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Is Record, the number of the item’s 
original table is returned.

If an item with the given tag exists and has any other type, zero is returned, an error is 
generated and OK is set to zero.

See Also
OT GetRecord, OT PutRecord

OT GetRecordTable version 1.5

OT GetRecordTable(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Number  The retrieved item’s table number
72 Command Reference



ObjectTools 5.0
Discussion
OT GetString gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty string is returned.

If no item in the object has the given tag, an empty string is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Is Character (112), the value of the 
requested element is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and an 
empty string is returned.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving strings.

Warning: If your database is running in compatibility mode and the result of this 
method is assigned to a fixed width string variable, the item’s contents will be 
truncated to the width of the variable. To retrieve more than 255 characters from a 
character item, use OT GetText and assign to a text variable or field.

See Also
OT PutString, OT GetText, OT GetArrayString

OT GetString version 1

OT GetString(inObject; inTag)  String

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result String  The retrieved item
Command Reference 73



ObjectTools 5.0
Discussion
OT GetText gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and an 
empty string is returned.

If no item in the object has the given tag, an empty string is returned. If the FailOnNoItem 
option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type OT Is Character (112), the value of the 
requested element is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and an 
empty string is returned.

See “The Character Item Type” on page 13 for more information on storing and 
retrieving strings.

See Also
OT PutText, OT PutString, OT GetString, OT GetArrayText

OT GetText version 1

OT GetText(inObject; inTag)  Text

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Text  The retrieved item
74 Command Reference



ObjectTools 5.0
Discussion
OT GetTime gets a value in inObject from the item referenced by inTag.

If the object is not a valid object handle, an error is generated, OK is set to zero, and the 
time ?00/00/00? is returned.

If no item in the object has the given tag, the time ?00:00:00? is returned. If the 
FailOnNoItem option is set, an error is generated and OK is set to zero.

If an item with the given tag exists and has the type Is Time, the value of the requested 
item is returned.

If an item with the given tag exists and has any other type, OK is set to zero, and the time 
?00:00:00? is returned.

See Also
OT PutTime, OT GetArrayTime

OT GetTime v4.1r1

OT GetTime(inObject; inTag)  Time

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
Function result Time  The retrieved item
Command Reference 75



ObjectTools 5.0
Discussion
OT GetVariable gets a value in inObject from the item referenced by inTag. Every 4D 
variable type but 2D arrays can be retrieved with this command, including Boolean 
variables and arrays.

If the object is not a valid object handle, an error is generated and OK is set to zero.

If no item in the object has the given tag, nothing happens.

If an item with the given tag exists and has the same type as the type of the destination 
variable, the variable’s data is replaced with the data stored in the object.

If an item with the given tag exists and has a type other than the type of the destination 
variable, an error is generated and OK is set to zero.

See Also
OT PutVariable

OT GetVariable version 1.5

OT GetVariable(inObject; inTag; outVarPointer)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to retrieve
outVarPointer Variable pointer  Pointer to a variable to receive the 

named item
76 Command Reference



ObjectTools 5.0
Array Utility Routines

The following routines provide commands for manipulating, searching and sorting 
arrays. These commands are analogous to the array commands in 4D. It is far more 
efficient to use these commands than to use OT GetArray, manipulate the array, then use 
OT PutArray.
Command Reference 77



ObjectTools 5.0
Discussion
OT DeleteElement deletes one or more elements from an array in inObject. 

If inObject is not a valid object handle, if no item in the object has the given tag, or if the 
item’s type is not an array type, an error is generated and OK is set to zero.

Elements are deleted starting at the element specified by inWhere. The inHowMany 
parameter is the number of elements to delete. If inHowMany is not specified or zero, 
then one element is deleted. The size of the array shrinks by inHowMany elements.

See Also
OT InsertElement

OT DeleteElement version 2

OT DeleteElement(inObject; inTag; inWhere {; inHowMany})

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the array item to change
inWhere Number  Element to delete
inHowMany Number  How many elements to delete
78 Command Reference



ObjectTools 5.0
Discussion
OT FindInArray searches an array in inObject for the value inValue. 

If inObject is not a valid object handle, if no item in the object has the given tag, or if the 
item’s type is not an array type, an error is generated, OK is set to zero, and -1 is returned.

If inStart is not specified or is zero, it defaults to 1. The text inValue is converted to the 
type appropriate for the array being searched. For example, for a Longint array or Real 
array, inValue is converted as if it where passed to the 4D Num command. The formats 
used to convert values are as follows:

The result of the command is the index of the first matching element, or -1 if no match is 
found.

OT FindInArray version 2

OT FindInArray(inObject; inTag; inValue {; inStart})  Longint

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the array item to change
inValue Text  Value to search for
inStart Number  Element at which to start search
Function result Number  The index of the first element found

Array type Example inValue

Boolean array "true" or "1" = true, "false" or "0" = false

Date array String(!08/27/31!)

Longint array String(7)

Real array String(13.27)

Note: Wildcards may be used when searching string/text arrays just as in 4D.
Command Reference 79



ObjectTools 5.0
Discussion
OT InsertElement inserts one or more elements into an array in inObject. 

If inObject is not a valid object handle, if no item in the object has the given tag, or if the 
item’s type is not an array type, an error is generated and OK is set to zero.

The new elements are inserted before the element specified by inWhere, and are 
initialized to an empty value for the array type. All elements beyond inWhere are moved 
up to make room for the new elements.

If inWhere is greater than the size of the array, the elements are added to the end of the 
array.

See Also
OT DeleteElement

OT InsertElement version 2

OT InsertElement(inObject; inTag; inWhere {; inHowMany})

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the array item to change
inWhere Number  Where to insert
inHowMany Number  How many elements to insert
80 Command Reference



ObjectTools 5.0
Discussion
OT ResizeArray resizes an array in inObject. 

If inObject is not a valid object handle, if no item in the object has the given tag, or if the 
item’s type is not an array type, an error is generated and OK is set to zero.

If inSize is greater than the current size of the array, empty elements are added to the end 
of the array. If inSize is less than the current size of the array, elements from inSize + 1 to 
the end of the array are deleted.

See Also
OT DeleteElement, OT InsertElement, OT SizeOfArray

OT ResizeArray version 2

OT ResizeArray(inObject; inTag; inSize)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the array item to change
inSize Number  New array size
Command Reference 81



ObjectTools 5.0
Discussion
OT SizeOfArray returns the number of elements in an array item within an object.

If inObject is not a valid object handle, if no item in the object has the given tag, or if the 
item’s type is not an array type, an error is generated, OK is set to zero, and zero is 
returned.

See Also
OT PutArray, OT GetArray

OT SizeOfArray version 1

OT SizeOfArray(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to query
Function result Number  The size of the item’s array
82 Command Reference



ObjectTools 5.0
Discussion
OT SortArrays performs a multilevel sort on one or more arrays in inObject. You may sort 
up to seven arrays at once with this command.

If inObject is not a valid object handle, if no item in the object has the given tag, if the 
item’s type is not a sortable array type, if all of the arrays do not have the same number of 
elements, or if a direction is not valid, an error is generated and OK is set to zero.

The direction should be one of three values to indicate how to sort the array:

For example, to sort parallel arrays of names and associated ids, you would use 
something like this:

To sort a group of addresses by state and then city within each state, you would use 
something like this:

OT SortArrays version 1

OT SortArrays(inObject; inTag1; inDirection1 {; ...inTag7; inDirection7})

Parameter Type Description
inObject Longint  A handle to an object
inTag1 Text  Tag of the array to sort
inDirection1 String  Direction of sort

Value Sort direction

">" Ascending

"<" Descending

"*" Move with previous array

OT SortArrays($object;"names";">";"ids";"*")

OT SortArrays($object;"states";">";"cities";">")
Command Reference 83



ObjectTools 5.0
Object Info Routines

The following routines provide the ability to obtain complete information about an 
object as a whole. To obtain information about individual items within an object, see 
“Item Info Routines” on page 88.
84 Command Reference



ObjectTools 5.0
Discussion
To test whether a given Longint value is a valid object handle, use OT IsObject. If inObject 
points to a valid object, 1 is returned. If inObject is zero or points to some other type of 
object, zero is returned.

While it is possible to construct a BLOB that would fool ObjectTools into thinking it was a 
object, this is extremely unlikely.

All ObjectTools methods check the validity of the object handle passed in to prevent 
truly nasty things from happening. Unless you are unsure about the contents of a 
variable or field passed to ObjectTools as a object handle, there is no need to call 
OT IsObject first.

Example
If you try to retrieve an embedded object from another object and it does not exist, a null 
object handle is returned. In that case you would want to test the result as shown in the 
example below.

The above example assumes that the requested tag is valid and tries to get the 
embedded object before checking the tag’s validity. Another approach would be to 
check the tag first by using OT ItemExists.

See Also
OT ItemExists

OT IsObject version 1

OT IsObject(inObject)  Longint

Parameter Type Description
inObject Longint  A handle to an object
Function result Longint  1 if inObject is an ObjectTools object 

handle, 0 if not

C_STRING(255;$tag)
$tag:=Request("Item tag:")

If ((OK=1) & (Length($tag)>0)
   C_LONGINT($embedded)
   $embedded:=OT GetObject (stMyObject;$tag)  `$tag may not be 
valid!

   If (OT IsObject ($embedded))
      `Do something with the object
   End if
End if
Command Reference 85



ObjectTools 5.0
Discussion
OT ItemCount returns the number of top level items in the referenced object. Items in 
embedded objects are not included in the count.

If inObject is not a valid object handle, an error is generated, OK is set to zero, and zero is 
returned.

If the tag is not passed or is empty, the count of top level items in the object is returned.

If the tag is passed, is not empty, and is a valid item reference for an embedded object, 
the count of top level items in the embedded object is returned.

Otherwise an error is generated, OK is set to zero, and zero is returned.

See Also
OT IsObject, OT IsEmbedded

OT ItemCount version 1

OT ItemCount(inObject {; inTag})  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of an embedded object
Function result Number  The item count
86 Command Reference



ObjectTools 5.0
Discussion
OT ObjectSize returns the total size of an object in memory. If inObject is not a valid object 
handle, an error is generated, OK is set to zero, and zero is returned.

See Also
OT GetAllProperties, OT GetItemProperties

OT ObjectSize version 1

OT ObjectSize(inObject)  Number

Parameter Type Description
inObject Longint  A handle to an object
Function result Number  The total size of the object in bytes
Command Reference 87



ObjectTools 5.0
Item Info Routines

The following routines provide the ability to obtain various information about each item 
in an object. These routines are useful if you want to deal with objects in a generic way 
and need to know how to classify each item.
88 Command Reference



ObjectTools 5.0
Discussion
OT GetAllNamedProperties returns information about all items in the object (or 
embedded object) referenced by inObject and inTag. If inTag is empty, information on 
inObject is returned. The information is returned in the given arrays. The arrays will 
contain one element for each item in object.

If the object is not a valid object handle, inTag is non-empty and does not reference an 
embedded object, or if the arrays are not of the type specified, an error is generated, the 
arrays are cleared and OK is set to zero.

The sizes in outItemSizes represent the total size of the item within the object, including 
the item’s data, tag and other internal information. The sizes in outDataSizes represent 
the size of the item’s data.

See Also
OT GetAllProperties, OT GetItemProperties, OT GetNamedProperties

OT GetAllNamedProperties version 3

OT GetAllNamedProperties(inObject; inTag; outNames {; outTypes {; outItemSizes {; 
outDataSizes}}}) 

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of an embedded object
outName String/Text array  Receives item names
outTypes Longint array  Receives item types
outItemSizes Longint array  Receives item sizes in bytes
outDataSizes Longint array  Receives item data sizes in bytes

Note: Item names are returned in an indeterminate order, so you may want to sort 
the arrays after making this call.
Command Reference 89



ObjectTools 5.0
Discussion
OT GetAllProperties returns information about all items in inObject into the given arrays. 
The arrays will contain one element for each item in object.

If the object is not a valid object handle or if the arrays are not of the type specified, an 
error is generated, the arrays are cleared and OK is set to zero.

The sizes in outItemSizes represent the total size of the item within the object, including 
the item’s data, tag and other internal information. The sizes in outDataSizes represent 
the size of the item’s data.

See Also
OT GetAllNamedProperties, OT GetItemProperties, OT GetNamedProperties

OT GetAllProperties
version 1

modified version 2.0

OT GetAllProperties(inObject; outNames {; outTypes {; outItemSizes {; outDataSizes}}}) 

Parameter Type Description
inObject Longint  A handle to an object
outName String/Text array  Receives item names
outTypes Longint array  Receives item types
outItemSizes Longint array  Receives item sizes in bytes
outDataSizes Longint array  Receives item data sizes in bytes

Note: Item names are returned in an indeterminate order, so you may want to sort 
the arrays after making this call.
90 Command Reference



ObjectTools 5.0
Discussion
OT GetItemProperties returns the properties of a given item. Items are numbered 
according to the number of items in an object, starting with 1. In conjunction with OT 
ItemCount, this allows you to iterate over all of the items in the object.

If inObject is not a valid object handle or if the index is out of range, an error is generated, 
OK is set to zero, and the return variables are left untouched.

See Also
OT GetAllNamedProperties, OT GetAllProperties, OT GetNamedProperties

OT GetItemProperties
version 1

modified version 2.0

OT GetItemProperties(inObject; inIndex; outName {; outType {; outItemSize   
                                 {; outDataSize}}}) 

Parameter Type Description
inObject Longint  A handle to an object
inIndex Longint  An index from 1 to the number of 

items in the object
outName Text  Receives the item’s name
outType Longint  Receives the item’s type
outItemSize Longint  Receives the item’s size
outDataSize Longint  Receives the item data’s size

Note: This command has been kept for backwards compatibility. It is recommended 
that you not use this command, as the object items are stored in indeterminate order, 
thus making the item index useless. You should use OT GetNamedProperties instead.
Command Reference 91



ObjectTools 5.0
Discussion
OT GetNamedProperties returns the properties of the item identified by the tag inTag.

If inObject is not a valid object handle or if no item in object has the given tag, an error is 
generated, OK is set to zero, and the return variables are left untouched.

See Also
OT GetAllNamedProperties, OT GetAllProperties, OT GetItemProperties

OT GetNamedProperties
version 1

modified version 2.0

OT GetNamedProperties(inObject; inTag; outType {; outItemSize 
                                       {; outDataSize {; outIndex}}}}) 

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  An item tag
outType Longint  Receives the item’s type
outItemSize Longint  Receives the item’s size including the 

tag
outDataSize Longint  Receives the item’s size excluding the 

tag
outIndex Longint  Receives the item’s index

Note: outIndex will always be zero, as it is meaningless. It has been kept for 
backwards compatibility.
92 Command Reference



ObjectTools 5.0
Discussion
OT IsEmbedded tests the item referenced by inTag to see if it is an embedded object.

If inObject is not a valid object handle or if no item in object has the given tag, an error is 
generated, OK is set to zero, and zero is returned.

If an item with the given tag exists and has the type OT Is Object, 1 is returned.

If an item with the given tag exists and has any other type, zero is returned.

See Also
OT ItemType, OT GetItemProperties, OT GetNamedProperties

OT IsEmbedded version 1

OT IsEmbedded(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to query
Function result Number  1 if the given item is an embedded 

object, 0 if not
Command Reference 93



ObjectTools 5.0
Discussion
OT ItemExists tests for the existence of the given item. inTag may refer to a top level item, 
an embedded object or an embedded item.

If inObject is not a valid object handle, an error is generated, OK is set to zero, and zero is 
returned.

If an item with the given tag exists, 1 is returned. Otherwise zero is returned.

OT ItemExists version 1

OT ItemExists(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to query
Function result Number  1 if the given item exists, 0 if not
94 Command Reference



ObjectTools 5.0
Discussion
OT ItemType returns the type of the item referenced by inTag.

If inObject is not a valid object handle or if no item in object has the given tag, an error is 
generated, OK is set to zero, and zero is returned.

If an item with the given tag exists, its type is returned.

See Also
OT GetAllNamedProperties, OT GetAllProperties, OT GetNamedProperties,  
OT GetItemProperties

OT ItemType version 1

OT ItemType(inObject; inTag)  Number

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to query
Function result Number  The type of the item
Command Reference 95



ObjectTools 5.0
Item Utility Routines

The following routines allow you to fold, spindle and otherwise manipulate individual 
items within an object.
96 Command Reference



ObjectTools 5.0
Discussion
OT CompareItems compares two items for equality. inSourceObject and inCompareObject 
may be the same object.

If inSourceObject or inCompareObject is not a valid object handle, if either of the two 
items do not exist, or if the two items do not have the same type, an error is generated, 
OK is set to zero, and -1 is returned.

Otherwise, the items are compared according to the rules of equality used for equivalent 
variable types in 4D, with the addition that you may compare array, BLOB, Picture and 
embedded object items.

3 Arrays are considered identical if they are the same size and the corresponding 
elements would be considered equal in 4D. This means that when comparing 
elements of character arrays, case and diacriticals are not significant and wildcards are 
used.

3 BLOB and Picture items are considered identical if they contain the same data byte for 
byte.

3 Embedded objects are considered identical if each of their items are considered 
identical according to the rules for non-object types.

OT CompareItems version 1

OT CompareItems(inSourceObject; inSourceTag; 
                                  inCompareObject; inCompareTag)  Number
Parameter Type Description
inSourceObject Longint  A handle to an object
inSourceTag Text  An item tag
inCompareObject Longint  A handle to an object
inCompareTag Text  An item tag
Function result Number  0 if not identical, 1 if identical, -1 if an 

error occurred
Command Reference 97



ObjectTools 5.0
Discussion
OT RenameItem renames the item referenced by inTag to the item referenced by 
inNewTag. Note that inTag must be a full tag if the target item is in an embedded object, 
whereas inNewTag is the new item name only. For example:

The above example will rename the item old_name to new_name within the embedded 
object foo.bar. To access the renamed item you would use the tag "foo.bar.new_name".

If the object handle is invalid, or if the item does not exist, or if an existing item has the 
same name as inNewTag, an error is generated, OK is set to zero, and no rename is 
performed.

OT RenameItem version 2

OT RenameItem(inObject; inTag; inNewTag)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  A full item tag
inNewTag Text  The new item tag

OT RenameItem ($obj;"foo.bar.old_name";"new_name")
98 Command Reference



ObjectTools 5.0
Discussion
OT CopyItem copies the item referenced by inSourceTag to the item referenced by 
inDestTag. The item referenced by inDestTag need not exist; it will be created if necessary. 
The source and destination objects may be the same, allowing either duplication of an 
item at the same level of embedding within an object, or copying an item from one level 
of embedding to another.

If either object handle is not valid, or if the source item does not exist, or if the source 
item and destination item do not have the same type, an error is generated, OK is set to 
zero, and no copy is performed.

OT CopyItem version 1

OT CopyItem(inSourceObject; inSourceTag; inDestObject; inDestTag)

Parameter Type Description
inSourceObject Longint  A handle to an object
inSourceTag Text  An item tag
inDestObject Longint  A handle to an object
inDestTag Text  An item tag

Note: Copying an embedded object recursively copies all of its items.
Command Reference 99



ObjectTools 5.0
Discussion
OT DeleteItem deletes an item from an object. inTag may refer to embedded items and 
objects.

If inObject is not a valid object handle or inTag refers to an item that does not exist, an 
error is generated, OK is set to zero, and no delete is performed.

OT DeleteItem version 1

OT DeleteItem(inObject; inTag)

Parameter Type Description
inObject Longint  A handle to an object
inTag Text  Tag of the item to delete

Note: Deleting an embedded object recursively deletes all of its items.
100 Command Reference



ObjectTools 5.0
Import/Export Routines

The following routines provide the ability to import and export objects to 4D BLOB 
variables. This allows you to easily save and restore objects either to the database or to 
files on disk.
Command Reference 101



ObjectTools 5.0
Discussion
OT BLOBToObject retrieves an object from a BLOB into a new object handle. The Object 
must have been stored in the BLOB with OT ObjectToBLOB/OT ObjectToNewBLOB, not with 
VARIABLE TO BLOB.

If ioOffset is not passed in it defaults to zero.

If the bytes at the given offset do not describe an object stored with 
OT ObjectToBLOB/OT ObjectToNewBLOB, or if the serialized object contains BLOB or Time 
arrays and the version of 4D is not v14 or later, an error is generated, OK is set to zero, 
ioOffset is left untouched and a null handle (0) is returned.

OT BLOBToObject transparently converts BLOBs created with earlier versions of 
ObjectTools.

Warning: The handle returned is a new object that is added to ObjectTools’ internal 
list of objects. You must be sure to clear the new object with OT Clear when you no 
longer need it.

See Also
OT ObjectToBLOB, OT ObjectToNewBLOB

OT BLOBToObject version 1

OT BLOBToObject(inBLOB {; ioOffset})  Longint

Parameter Type Description
inBLOB BLOB  A BLOB which contains an object
ioOffset Longint  The offset within the BLOB where the 

object can be found
102 Command Reference



ObjectTools 5.0
Description
OT ObjectToBLOB stores an object into a BLOB. The previous contents of the BLOB, if any, 
are completely replaced, unless a non-zero value is passed in inAppend, in which case the 
object is appended to inBLOB.

Once stored within a BLOB, you must retrieve an object from it with OT BLOBToObject, not 
with BLOB TO VARIABLE.

If inObject is not a valid object handle, if ioBLOB is not a valid BLOB, or if memory cannot 
be allocated to copy the object, an error is generated, OK is set to zero, and ioBLOB is 
cleared.

Warning: Do not attempt to open an object saved in ObjectTools 4 with a version 
earlier than v3.

Warning: Do not attempt to pass a BLOB field or a dereferenced pointer to a BLOB 
field in the ioBLOB paremeter, as this will result in a crash. If you want to retrieve a 
BLOB item into a field, either use an intermediate local variable or assign the result of 
OT ObjectToNewBLOB to the field.

The Object passed to OT ObjectToBLOB is copied into blob and remains in memory. 
You must be sure to clear it with OT Clear when you no longer need it.

See Also
OT BLOBToObject, OT ObjectToNewBLOB

OT ObjectToBLOB version 1

OT ObjectToBLOB(inObject; ioBLOB {; inAppend})

Parameter Type Description
inObject Longint  An object handle
ioBLOB BLOB  A BLOB which receives the object
inAppend Longint  0 to replace ioBLOB’s contents, non-

zero to append to ioBLOB
Command Reference 103



ObjectTools 5.0
Description
OT ObjectToNewBLOB stores an object into a new BLOB.

Once stored within a BLOB, you must retrieve an object from it with OT BLOBToObject, not 
with BLOB TO VARIABLE.

If inObject is not a valid object handle or if memory cannot be allocated to copy the 
object, an error is generated, OK is set to zero, and an empty BLOB is returned.

Warning: Do not attempt to open an object saved in ObjectTools 4 with a version 
earlier than v3.

Warning: The Object passed to OT ObjectToNewBLOB is copied into blob and 
remains in memory. You must be sure to clear it with OT Clear when you no longer 
need it.

See Also
OT BLOBToObject, OT ObjectToBLOB

OT ObjectToNewBLOB version 1.5

OT ObjectToNewBLOB(inObject)  BLOB

Parameter Type Description
inObject Longint  An object handle
Function result BLOB  A new BLOB which contains the object
104 Command Reference



ObjectTools 5.0
Object Utility Routines

The following routines provide various utility calls that deal with ObjectTools on a global 
basis.
Command Reference 105



ObjectTools 5.0
Description
OT CompiledApplication is the same as the 4D command Compiled application. It is no 
longer necessary but has been kept for backwards compatibility.

OT CompiledApplication version 1

OT CompiledApplication  Longint

Parameter Type Description
Function result Longint  1 if the application is compiled, 0 if 

interpreted
106 Command Reference



ObjectTools 5.0
Discussion
Any time an object is created, whether through OT New, OT Copy, OT GetObject, or 
OT BLOBToObject, ObjectTools adds the new object handle to an internal list. When an 
object is cleared with OT Clear, the object’s handle is removed from the list.

OT GetHandleList retrieves this internal list into an array. This is mainly of use in 
debugging. Normally you would have no need to use this method.

See Also
OT New, OT Clear

OT GetHandleList version 1

OT GetHandleList(outHandles)

Parameter Type Description
outHandles Longint array  Receives a list of all current objects
Command Reference 107



ObjectTools 5.0
Discussion
OT GetOptions returns a 32-bit number which contains bits representing the different 
options for ObjectTools. You can use the 4D ?? bit test operator to test the state of a given 
option and the ?+ (bit set) or ?- (bit clear) operators to set or clear individual options.

Currently, there are two options defined. ObjectTools provides named constants for 
testing the options.

OT FailOnItemNotFound
By default, if an item cannot be found, the OT Get<type> routines will return a default 
value. If the OT FailOnItemNotFound option is set, a default value will still be returned but 
ObjectTools will generate an error and set OK to zero.

OT ExactTagMatch (deprecated)
Because of changes in the way objects are stored, this option is no longer supported.

OT AutoCreateObjects (new in version 2.0)
Previous to ObjectTools 2.0, to add an embedded objects to another object, you had to 
create the embedded object, put it, then clear it. This was tedious and ultimately 
unnecessary.

ObjectTools 2.0 will auto-create embedded objects by default whenever you put an item 
with a tag that contains embedded item references. For example:

In the above example, after the call to OT PutString $obj contains the embedded object 
“one”, which contains the embedded object “two”, which contains a string “three”.

This facility will make it considerably easier to create complex object hierarchies than in 
ObjectTools 1.x.

OT GetOptions
version 1 

modified version 2.0

OT GetOptions  Longint

Parameter Type Description
Function result Longint  A set of 32 bit flags

Option Bit Default

OT FailOnItemNotFound 0 0 (off )

OT ExactTagMatch 1 0 (off )

OT AutoCreateObjects 2 1 (on)

OT VariantItems 3 0 (off )

C_LONGINT($obj)
$obj:=OT New
OT PutString ($obj;"one.two.three";"way cool!")
108 Command Reference



ObjectTools 5.0
OT VariantItems (new in version 2.0)
By default, if you try to put a value into an item of a different type, an error is generated. 
The rationale behind this behavior is to prevent unintended changing of the type by 
carelessness or negligence.

However, what if you want to change the type of items? If such is your desire, you can 
now do so by setting the OT VariantItems option. For example:

See Also
OT SetOptions

C_LONGINT($obj)
$obj:=OT New
OT PutString($obj;"test";"way cool!")
OT PutLong($obj;"test";7)  `This generates an error

`Set the flag to allow variant item types and try again
OT SetOptions(OT GetOptions | OT VariantItems)
OT PutLong($obj;"test";7)  `This will work, the item is now a 
longint
Command Reference 109



ObjectTools 5.0
Discussion
OT GetVersion returns a textual representation of the current numeric version of 
ObjectTools, along with information about the platform and build type.

OT GetVersion version 1

OT GetVersion  Text

Parameter Type Description
Function result Text  The current version of ObjectTools
110 Command Reference



ObjectTools 5.0
Description
OT Register registers your serial number with ObjectTools. If inSerialNum is valid, 1 is 
returned, otherwise zero is returned.

If OT Register is not called or is called with an incorrect serial number, ObjectTools will 
timeout after 15 minutes of use. Once ObjectTools has timed out, the next call to 
ObjectTools will cause an ObjectTools error to be generated, and subsequent calls will 
have no effect or will return an empty value.

OT Register
version 1 

modified version 2.5

OT Register(inSerialNum)  Longint

Parameter Type Description
inSerialNum Text  ObjectTools serial number
Function result Longint  Result code
Command Reference 111



ObjectTools 5.0
Discussion
OT SetErrorHandler sets the action to perform when ObjectTools encounters an error. The 
previous error handler is returned.

By default, action is taken when an error occurs.

If you pass the name of an existing 4D method in inHandler, that method will get called 
when an error occurs. The method must take four parameters:

3 message (C_TEXT): A description of the error that occurred.

3 method (C_TEXT): The name of the ObjectTools method that was called when the 
error occurred.

3 object (C_LONGINT): The longint reference of the object being operated on when 
the error occurred. If the error does not involve an object, this will be zero.

3 tag (C_TEXT): The tag of the object item being referenced when the error occurred. If 
the error does not involve a tag, this will be empty.

Warning: If you are upgrading to ObjectTools 5 from a previous version, you must be 
sure to add the extra two parameters to your error handler methods.

Whether or not an error handler is set, whenever an error occurs the OK variable is set to 
zero.

OT SetErrorHandler returns the old handler so that you may dynamically change the error 
handling within your code.

OT SetErrorHandler
version 1

modified v5.0r1

OT SetErrorHandler(inNewHandler)  Text

Parameter Type Description
inNewHandler Text  Name of a 4D method to execute
Function result Text  The name of the previous error 

handler

Note: If you put a TRACE statement at the end of your error handler method, when 
an error occurs the 4D debugger will come up. If you then step one line, you will be at 
the line after the one that caused the error.
112 Command Reference



ObjectTools 5.0
Discussion
OT SetOptions sets all of the ObjectTools options using a 32-bit number, which contains 
bits representing the different options.

Because all of the options are set at once, this call should be preceded by a call to OT 
GetOptions, then the 4D bitwise operators should be used to set or clear individual bit 
flags.

See “OT GetOptions” on page 108 for a list of the current options.

See Also
OT GetOptions

OT SetOptions
version 1

modified version 1.6

OT SetOptions(inOptions)

Parameter Type Description
inOptions Longint  Set of 32 bit flags
Command Reference 113



ObjectTools 5.0
114 Command Reference



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
INDEX OF COMMANDS

OT BLOBToObject. . . . . . . . . . . . . . . . . . 102

OT Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

OT ClearAll . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

OT CompareItems  . . . . . . . . . . . . . . . . . . 97

OT CompiledApplication. . . . . . . . . . 106

OT Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

OT CopyItem  . . . . . . . . . . . . . . . . . . . . . . . . 99

OT DeleteElement  . . . . . . . . . . . . . . . . . . 78

OT DeleteItem . . . . . . . . . . . . . . . . . . . . . . 100

OT FindInArray . . . . . . . . . . . . . . . . . . . . . . 79

OT GetAllNamedProperties . . . . . . . . 89

OT GetAllProperties  . . . . . . . . . . . . . . . . 90

OT GetArray  . . . . . . . . . . . . . . . . . . . . . . . . . 51

OT GetArrayBLOB . . . . . . . . . . . . . . . . . . . 52

OT GetArrayBoolean. . . . . . . . . . . . . . . . 53

OT GetArrayDate . . . . . . . . . . . . . . . . . . . . 54

OT GetArrayLong  . . . . . . . . . . . . . . . . . . . 55

OT GetArrayPicture . . . . . . . . . . . . . . . . . 56

OT GetArrayPointer . . . . . . . . . . . . . . . . . 57

OT GetArrayReal  . . . . . . . . . . . . . . . . . . . . 58

OT GetArrayString  . . . . . . . . . . . . . . . . . . 59

OT GetArrayText  . . . . . . . . . . . . . . . . . . . . 60

OT GetArrayTime  . . . . . . . . . . . . . . . . . . . 61

OT GetBLOB  . . . . . . . . . . . . . . . . . . . . . . . . . 62

OT GetBoolean . . . . . . . . . . . . . . . . . . . . . . 63

OT GetDate . . . . . . . . . . . . . . . . . . . . . . . . . . 64

OT GetHandleList . . . . . . . . . . . . . . . . . . 107

OT GetItemProperties . . . . . . . . . . . . . . 91

OT GetLong. . . . . . . . . . . . . . . . . . . . . . . . . . 65

OT GetNamedProperties . . . . . . . . . . . 92

OT GetNewBLOB . . . . . . . . . . . . . . . . . . . . 66

OT GetObject . . . . . . . . . . . . . . . . . . . . . . . . 67

OT GetOptions  . . . . . . . . . . . . . . . . . . . . . 108

OT GetPicture  . . . . . . . . . . . . . . . . . . . . . . . 68

OT GetPointer . . . . . . . . . . . . . . . . . . . . . . . 69

OT GetReal . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Index of Commands 115



ObjectTools 5.0
OT GetRecord  . . . . . . . . . . . . . . . . . . . . . . . 71

OT GetRecordTable . . . . . . . . . . . . . . . . . 72

OT GetString. . . . . . . . . . . . . . . . . . . . . . . . . 73

OT GetText. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

OT GetTime . . . . . . . . . . . . . . . . . . . . . . . . . . 75

OT GetVariable . . . . . . . . . . . . . . . . . . . . . . 76

OT GetVersion . . . . . . . . . . . . . . . . . . . . . . 110

OT InsertElement  . . . . . . . . . . . . . . . . . . . 80

OT IsEmbedded . . . . . . . . . . . . . . . . . . . . . 93

OT IsObject  . . . . . . . . . . . . . . . . . . . . . . . . . . 85

OT ItemCount  . . . . . . . . . . . . . . . . . . . . . . . 86

OT ItemExists . . . . . . . . . . . . . . . . . . . . . . . . 94

OT ItemType . . . . . . . . . . . . . . . . . . . . . . . . . 95

OT New. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

OT ObjectSize  . . . . . . . . . . . . . . . . . . . . . . . 87

OT ObjectToBLOB. . . . . . . . . . . . . . . . . . 103

OT ObjectToNewBLOB . . . . . . . . . . . . 104

OT PutArray. . . . . . . . . . . . . . . . . . . . . . . . . . 26

OT PutArrayBLOB . . . . . . . . . . . . . . . . . . . 27

OT PutArrayBoolean . . . . . . . . . . . . . . . . 28

OT PutArrayDate . . . . . . . . . . . . . . . . . . . . 29

OT PutArrayLong  . . . . . . . . . . . . . . . . . . . 30

OT PutArrayPicture  . . . . . . . . . . . . . . . . . 31

OT PutArrayPointer . . . . . . . . . . . . . . . . . 32

OT PutArrayReal. . . . . . . . . . . . . . . . . . . . . 33

OT PutArrayString  . . . . . . . . . . . . . . . . . . 34

OT PutArrayText  . . . . . . . . . . . . . . . . . . . . 35

OT PutArrayTime. . . . . . . . . . . . . . . . . . . . 36

OT PutBLOB  . . . . . . . . . . . . . . . . . . . . . . . . . 37

OT PutBoolean . . . . . . . . . . . . . . . . . . . . . . 38

OT PutDate  . . . . . . . . . . . . . . . . . . . . . . . . . . 39

OT PutLong . . . . . . . . . . . . . . . . . . . . . . . . . . 40

OT PutObject . . . . . . . . . . . . . . . . . . . . . . . . 41

OT PutPicture. . . . . . . . . . . . . . . . . . . . . . . . 42

OT PutPointer  . . . . . . . . . . . . . . . . . . . . . . . 43

OT PutReal . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

OT PutRecord. . . . . . . . . . . . . . . . . . . . . . . . 45

OT PutString . . . . . . . . . . . . . . . . . . . . . . . . . 46

OT PutText . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

OT PutTime . . . . . . . . . . . . . . . . . . . . . . . . . . 48

OT PutVariable  . . . . . . . . . . . . . . . . . . . . . . 49

OT Register  . . . . . . . . . . . . . . . . . . . . . . . . . 111

OT RenameItem . . . . . . . . . . . . . . . . . . . . . 98

OT ResizeArray  . . . . . . . . . . . . . . . . . . . . . . 81
116 Index of Commands



ObjectTools 5.0
OT SetErrorHandler . . . . . . . . . . . . . . . . 112

OT SetOptions . . . . . . . . . . . . . . . . . . . . . . 113

OT SizeOfArray . . . . . . . . . . . . . . . . . . . . . . 82

OT SortArrays. . . . . . . . . . . . . . . . . . . . . . . . 83
Index of Commands 117



ObjectTools 5.0
118 Index of Commands


	Introduction
	How Can Objects Help Me?
	How Do Objects Work?
	Registering ObjectTools
	System Requirements
	Resource Files
	What’s New In Version 5

	Working with Objects
	Creating and Destroying Objects
	Memory Management with Objects
	Using Item Tags
	Tag Characteristics

	Item Types
	The Character Item Type

	Putting and Getting Values Generically
	Embedded Objects
	Accessing Embedded Objects

	Using Arrays with Objects
	Accessing Array Elements within Object Items
	Other Array Utilities

	Error Handling
	The ObjectTools Log
	Changing the Log Level


	Command Reference
	Documentation Conventions
	Creation and Destruction Routines
	OT New
	OT Clear
	OT ClearAll
	OT Copy

	Put Value Routines
	OT PutArray
	OT PutArrayBLOB
	OT PutArrayBoolean
	OT PutArrayDate
	OT PutArrayLong
	OT PutArrayPicture
	OT PutArrayPointer
	OT PutArrayReal
	OT PutArrayString
	OT PutArrayText
	OT PutArrayTime
	OT PutBLOB
	OT PutBoolean
	OT PutDate
	OT PutLong
	OT PutObject
	OT PutPicture
	OT PutPointer
	OT PutReal
	OT PutRecord
	OT PutString
	OT PutText
	OT PutTime
	OT PutVariable

	Get Value Routines
	OT GetArray
	OT GetArrayBLOB
	OT GetArrayBoolean
	OT GetArrayDate
	OT GetArrayLong
	OT GetArrayPicture
	OT GetArrayPointer
	OT GetArrayReal
	OT GetArrayString
	OT GetArrayText
	OT GetArrayTime
	OT GetBLOB
	OT GetBoolean
	OT GetDate
	OT GetLong
	OT GetNewBLOB
	OT GetObject
	OT GetPicture
	OT GetPointer
	OT GetReal
	OT GetRecord
	OT GetRecordTable
	OT GetString
	OT GetText
	OT GetTime
	OT GetVariable

	Array Utility Routines
	OT DeleteElement
	OT FindInArray
	OT InsertElement
	OT ResizeArray
	OT SizeOfArray
	OT SortArrays

	Object Info Routines
	OT IsObject
	OT ItemCount
	OT ObjectSize

	Item Info Routines
	OT GetAllNamedProperties
	OT GetAllProperties
	OT GetItemProperties
	OT GetNamedProperties
	OT IsEmbedded
	OT ItemExists
	OT ItemType

	Item Utility Routines
	OT CompareItems
	OT RenameItem
	OT CopyItem
	OT DeleteItem

	Import/Export Routines
	OT BLOBToObject
	OT ObjectToBLOB
	OT ObjectToNewBLOB

	Object Utility Routines
	OT CompiledApplication
	OT GetHandleList
	OT GetOptions
	OT GetVersion
	OT Register
	OT SetErrorHandler
	OT SetOptions


	Index of Commands

